skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2027
  2. Free, publicly-accessible full text available September 1, 2026
  3. Free, publicly-accessible full text available September 3, 2026
  4. Free, publicly-accessible full text available September 8, 2026
  5. Free, publicly-accessible full text available July 30, 2026
  6. Free, publicly-accessible full text available July 23, 2026
  7. Free, publicly-accessible full text available July 14, 2026
  8. Abstract An important role in the cycling of marine trace elements is scavenging, their adsorption and removal from the water column by sinking particles. Boundary scavenging occurs when areas of strong particle flux drive preferential removal of the trace metals at locations of enhanced scavenging. Due to its uniform production and quick burial via scavenging,230Th is used to assess sedimentary mass fluxes; however, these calculations are potentially biased near regions where net lateral transport of dissolved230Th violates the assumption that the flux of particulate230Th to the seabed equals its rate of production in the water column. Here, we present a water column transect of dissolved230Th along 152° W between Alaska and Tahiti (GEOTRACES GP15), where we examine230Th profiles across multiple biogeochemical provinces and, novelly, the lateral transport of230Th to distal East Pacific Rise hydrothermal plumes. We observed a strong relationship between the slope of dissolved230Th concentration‐depth profiles and suspended particle matter inventory in the upper‐mid water column, reinforcing the view that biogenic particle mass flux sets the background230Th distribution in open ocean settings. We find that, instead of the region of enhanced particle flux around the equator, hydrothermal plumes act as a regional boundary sink of230Th. At 152° W, we found that the flux‐to‐production ratio, and thereby error in230Th‐normalized sediment flux, is between 0.80 and 1.50 for hydrothermal water, but the error is likely larger approaching the East Pacific Rise. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  9. Understanding the behavior of pressure increases in lithium-ion (Li-ion) cells is essential for prolonging the lifespan of Li-ion battery cells and minimizing the safety risks associated with cell aging. This work investigates the effects of C-rates and temperature on pressure behavior in commercial lithium cobalt oxide (LCO)/graphite pouch cells. The battery is volumetrically constrained, and the mechanical pressure response is measured using a force gauge as the battery is cycled. The effect of the C-rate (1C, 2C, and 3C) and ambient temperature (10 ◦C, 25 ◦C, and 40 ◦C) on the increase in battery pressure is investigated. By analyzing the change in the minimum, maximum, and pressure difference per cycle, we identify and discuss the effects of different factors (i.e., SEI layer damage, electrolyte decomposition, lithium plating) on the pressure behavior. Operating at high C-rates or low temperatures rapidly increases the residual pressure as the battery is cycled. The results suggest that lithium plating is predominantly responsible for battery expansion and pressure increase during the cycle aging of Li-ion cells rather than electrolyte decomposition. Electrochemical impedance spectroscopy (EIS) measurements can support our conclusions. Postmortem analysis of the aged cells was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to confirm the occurrence of lithium plating and film growth on the anodes of the aged cells. This study demonstrates that pressure measurements can provide insights into the aging mechanisms of Li-ion batteries and can be used as a reliable predictor of battery degradation. 
    more » « less
  10. Free, publicly-accessible full text available December 1, 2025